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These impressive tables evolved as a by-product of a search for integer squares 
of the form n! + 1 when n exceeds 7. This search, which has proved futile up to the 
limit n = 1140, extends earlier results of Kraitchik [6], as noted in the introduction 
to the first volume under review. 

These attractive, clearly printed tables exemplify the excellent output obtainable 
from electronic digital computers in conjunction with meticulous planning and 
editing. 
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In addition to the Riemann zeta function, t(x), here attractively tabulated to 
41S (with respect to t(x) - 1) for x = 0(0.005)1(0.01)10(0.02)58, we find in the four 
accompanying tables decimal values of functions designated by the author as a(x), 
X(x), n(x), and t(x). The range here is x = 1(0.01)10(0.02)58 and the precision is 
41S, except for X(x), where from 31 to 40S of X(x) - 1 are tabulated. (All the tabular 
entries have been left unrounded.) These four functions can be expressed in terms 
of r(x) by the relations: 

a(x) = 2-x$(x), X(x) = (1 -2-x)(x), 

7(x) = (1 - 2-x+l)(x), t(x) = 2-x(l - 2-x+1)(x). 

Each of these functions has been previously tabulated; however, the earlier 
tables, except for those of r(x), have been restricted to integer values of the argu- 
ment. Moreover, the notation employed in earlier tables, including those by Glaisher 
[1], Davis [2], and Lienard [3], differs from that adopted herein by Dr. McLellan. 
The two sets of notation are related as follows: 

Sn = t(n) , Un = X(n) , sn = I(n), 2 nSn = a(n), 2nsn = . 

The present tables are not accompanied by any explanatory text; however, the 
introduction to a preliminary abridged table [4] by the same author reveals that the 
calculations were based upon Euler's transformation as applied to the alternating; 
series derived from the standard series for r(x) by means of van Wijngaarden's 
transformation [5]. Furthermore, this reviewer has ascertained that the calculations 
were performed on an IBM 1620 II computer, using a program written in machine 
language. 

It might be noted that the most elaborate previous tabulation of t(x) for decimal 
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arguments appears to have been made by Shafer [6], but his 30D manuscript table 
for x = 1.01(0.01)50 is relatively inaccessible. For integer arguments the 50D tables 
of Lienard cover a wider range than those under review, but the precision is less for 
arguments exceeding 33. 

Thus, the present manuscript tables, attractively arranged and clearly printed, 
represent a significant contribution to the tabular literature relating to the Riemann 
zeta function and associated functions. 
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70[7].-D. S. MITRINOVIC & R. S. MITRINOVIC, Table des Nombres de Stirling de 
Seconde Espece, Publications de la Facult6 d'Electrotechnique de l'Universite 'a 
Belgrade (Serie: Math. et Phys.), No. 181, 1967, 16 pp., 25 cm. 

This attractive publication presents a table of the exact values of the Stirling 
numbers of the second kind, designated by ant, for r < n= 51(1)60. 

The underlying calculations, performed on a desk calculator, were based on the 
recurrence relation anr+ = rant + anal. Checking of the tabular entries correspond- 
ing to five selected values of n was performed at the Istituto Nazionale per le 
Applicazioni del Calcolo in Rome, using the relation E_1 (r+l)anr= Er'Z o-+i. 

In an addendum to the introduction the authors mention that this table was in 
the process of publication when they learned of the more extensive table by Andrew 
[1], with which they have found complete agreement. 

The valuable list of references appended to the explanatory text includes the 
fundamental table of Gupta [2], which, as the authors explicitly note, has been 
inadvertently omitted as a reference in several earlier publications on these numbers. 
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The first part of the set of tables having the above title appeared in 1962; the 
seventh and eighth parts (forming a single fascicle) are stated to conclude this set. 
Reviews of all the earlier parts may be found in Math. Comp. (v. 17, 1963, p. 311, 


